

QSIGMA Application Guide

.... creating precision

.... providing innovation

.... improving quality

.... enhancing efficiency

Quality control is a compulsory attribute of any production process. Embedded in the process, mature, smart and rapid?

Qsigma will be your partner in case of precise inspection of geometric shapes and dimensions.

Optical inspection concepts comprising of lasers, dedicated illumination setups, cameras and other suitable sensors are potential tools for optimizing your measurement demands. Process control and evaluation of process parameters are made suitable for your particular measurement duties.

Being competitive is an every day's demand for creating new products and breaking new grounds for products having gained their maturity. It's a demand for R&D and last not least for production concepts. However, demands on quality control and product monitoring may increase in consequence.

In many application fields, optical measurement techniques support for an improved combination of precision and duty cycle enhancements in contrast to conventional mechanical methods. Qsigma likes to assist you finding your new way.

Development of optical measurement systems is the basic concept of Qsigma. Improving quality is the driving force. As a claim for Qsigma's own product range and for improvements on products of our customers as well.

That holds for applications in R&D labs as well as in production environments. Quality improvement of your good products serve for benefits of your customers and yourself.

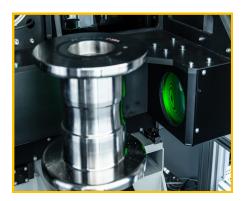
Just profit of Qsigma's expertise.

In a R&D lab process timing is fairly uncritical. Part loading can be manually done.

Being on a production floor it is completely different. Embedding in a production line, automated part loading, monitoring of process capabilities, data transfer, product tracing are few keywords among others. All they are important for enhancements in efficiency and productivity. It

is Qsigma's expertise to turn these demands into reality with a special respect to optimum duty cycles.

Just speak to us.

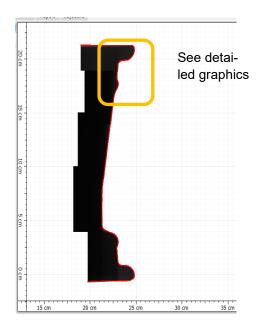


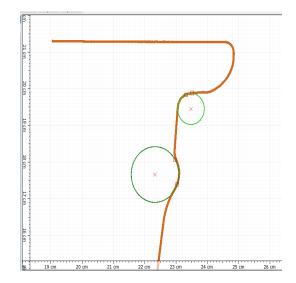
Gear Wheels

Vehicle Alloy Wheels

Cylinders, Drums, Reels etc.

- Circumference
- Shape Contour
- Module
- Edge Geometry
- End Faces
- Cylindrical Tolerance
- Parallelism
- Perpendicularity
- Recognition of Dents
- Pattern Recognition
- Welding Seams
- Comparison Real & Nominal Contour
- Violation of Tolerance Limits
- Approach towards Critical Values
- Statistical Process Capabilites
- Machine Suitability
- Process Suitability
- Reporting



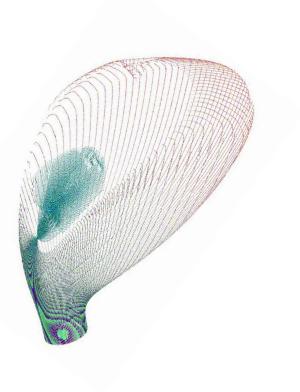


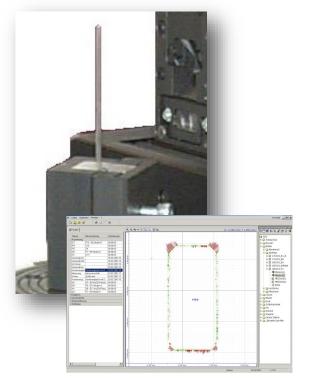
Example:

Contour Evaluation of an Alloy Wheel

Evaluation of the contour of a car alloy wheel

Rotary Piston of a Slurry Pump

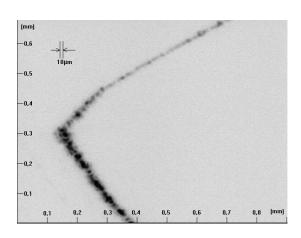

- Circumference
- Shape Contour
- Module
- Edge Geometry
- End Faces
- Geometry of Curvatures
- Pattern Recognition
- Welding Seams
- Comparison Real & Nominal Contour
- Violation of Tolerance Limits
- Approach towards Critical Values
- Statistical Process Capabilities
- Machine Suitability
- Process Suitability
- Reporting

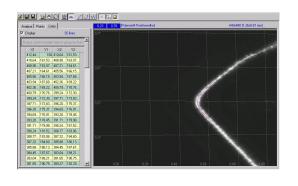

Golf Club

- Circumference
- Shape Contour
- Module
- Edge Geometry
- End Faces
- Geometry of Curvatures
- Pattern Recognition
- Welding seams
- Comparison Real & Nominal Contour
- Violaton of Tolerance Limits
- Approach towards Critical Values
- Statistical Process Capabilities
- Machine Suitability
- Process Suitability
- Reporting

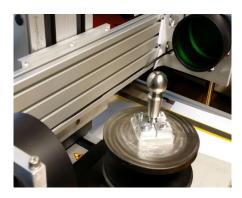
Geometrical Inspection of a Rectangular Wire

Measuremtent of the Edge Geometry of a Silicon Wafer


- Edge Geometry
- End Faces
- Parallelism
- Perpendicularity
- Comparison Real & Nominal Contour
- Violation of Tolerance Limits
- Approach towards Critical Values
- Statistical Process Capabilities
- Machine Suitability
- Process Suitability
- Reporting



4-edge lathe cutting insert


Messgrößen:

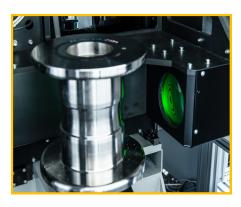
- Edge Geometry
- End Faces
- Parallelism
- Perpendicularity
- Comparison Real & Nominal Contour
- Violation of Tolerance Limits
- Approach towards Critical Values
- Statistical Process Capabilities
- Machine Suitability
- Process Suitability
- Reporting

Inspection of a Ball Joint Plug

							DEBUG] 3.6.556	000102					
Dpera	aton Config.	ration											
vint Start Start Start	Pause Stop Near		ontinuous seurement P		SPC Measureme Too		Open Neasurem	ent Standerd Report Report	Chiscreen Keyboard Keyboard	Quit Application			
lser:	999 Adm	nin						Step				Result	
ob:	2015-03-	16 Zar	fenme	suna			ies 🌄	Profilm	nessun	a		ОК	
				Joung							vertung	OK	
	(Select p					181				en-Ausv	ventung		
est Plan:	(Select t	est pla	n)			101	✓	Export				D:\Ap	psData\.
art ID:	Kugelzap	ofen D3	5 Blan	k		- I 2							
Preview Camer													
25 a													
и а				~	_								
ſ				~	_			Name		Value	Nominal Value	Tolerance	Tolerance Pos
ſ				1			>	D1		35.006 nm	Nominal Value	Tolerance	Tolerance Pos
ſ				4)	D1 D2		35.006 nm 23.927 nm	Nominal Value	Tolerance	Tolerance Pos
ſ				ſ)	D1 D2 D4		35.006 nm	Nominal Value	Tolerance	Telerance Pos
ſ				ť) >	D1 D2		35.006 nm 23.927 nm 14.883 nm	Nominal Value	Tolerance	Telerance Pos
ſ				ť)	D1 D2 D4		35.006 nm 23.927 nm 14.883 nm 107.393 nm	Nominal Value	Tolerance	Telerance Pos
				Ę) >	D1 D2 D4 L1 L4	,	35.006 nm 23.927 nm 14.883 nm 107.393 nm 40. 305 nm	Nominal Value	Tolerance	Telerance Pos
				Ę)	D1 D2 D4 L1 L4 D3 von Bode L3 von Boder L2 von Boder	5	35.006 nm 23.927 nm 14.883 nm 107.393 nm 40.305 nm 23.009 nm	Nominal Value	Talerance	Telerance Pos
				Ę			>	D1 D2 D4 L1 L4 D3 von Bode L3 von Bode L3 von Bode D3 Durchmes	n h h sersuche	35.006 nm 23.927 nm 14.883 nm 107.393 nm 43.905 nm 23.009 nm 15.325 nm 23.000 nm	Nominal Value	Tolerance	Talerance Pos
				Ę			>	D1 D2 D4 L1 L4 D3 von Bode L3 von Bode L3 von Bode D3 Durchnes L2 Durchnes	n h h nersuche nersuche	35.006 nm 23.927 nm 14.883 nm 107.393 nm 43.935 nm 23.009 nm 15.325 nm 23.000 nm 23.000 nm 23.000 nm	Nominal Value	Tolerance	Tolerance Pos
0				Ę			>	D1 D2 D4 L1 L4 D3 von Boder L3 von Boder L3 von Boder D3 Durchmen L3 Durchmen L3 Durchmen	n h sersuche sersuche sersuche	35.006 nm 23.927 nm 14.883 nm 107.393 nm 43.935 nm 23.009 nm 25.000 nm 15.325 nm 23.000 nm 23.482 nm 28.482 nm	Nominal Value	Tolerance	Telerance Pos
	5	C.		7.5 cm)	D1 D2 D4 L1 L4 D3 von Boder L3 von Boder L3 von Boder L3 von Boder L3 Durchmes L3 Durchmes L3 Durchmes D3 von Kopf	n h sersuche sersuche sersuche	35.006 nm 23.927 nm 14.983 nm 107.993 nm 40.905 nm 23.009 nm 25.000 nm 15.325 nm 23.000 nm 25.482 nm 28.948 nm 28.948 nm	Nominal Value	Talerance	Tolerance Post
12 9 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	<u> </u>			7.5 cm)	01 02 04 11 14 13 von Boder 13 von Boder 12 von Boder 13 Durchmes 13 Durchmes 13 Durchmes 13 Durchmes	n 5 5 sersuche sersuche sersuche	35.006 nm 23.927 nm 14.883 nm 107.393 nm 43.935 nm 23.009 nm 25.000 nm 15.325 nm 23.000 nm 23.482 nm 28.482 nm	Nominal Value	Telerance	Tolerance Pos

Measures:

- Dimensions & Geometries
- Leg Angles
- Reognition of Edges
- Comparison Real & Nominal Contour
- Violation of Tolerance Values
- Approach towards Critical Values
- Statistical Process Capability
- Machine Suitability
- Process Suitability
- Reporting


Capabilites:

- Offline sample Inspection
- Inline Production Controlling
- Embedding in Production Process
- Complete Automatic Operation
- Robotic Loading and Deloading

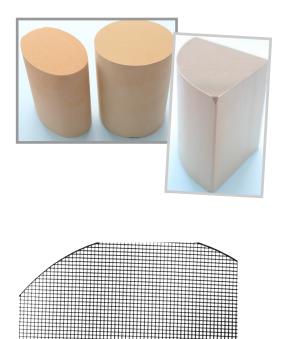
Inspection of Roll Forming Tools

					0	bignalm	aMees 3.7	816						- 0
Operation	Tenpletes Configu	ration												
Start Sinulation	a.se Step Reservent	Continuous Heasurement		SPC Measure	nert Calbra		n Peasre Insurene	Report	Que Que Agr	On-screet Keyboar	1			
er:					•			Step					Resu	lt
h: F	Profile check				•		J	Profilvera	leich A	verage	d-Profile	ged	Dev	= -0,003 mm
molato: (Select templat	a)				7	J	Höhenbe	timmu	na aec	reht		Heia	ht = 148,3
					_	1	. ×.	Durchme					-	199,961 mm
	Select test pla						. ×.					2110		195'set ww
rt-ID:					· 🧃	C	. T.	Ergebnisp	-	-			OK	
eles Canera							V	Export PD)F-Repo	ort ged	reht		s:\Al	ustausch\A
1						_	1	Export D)	(F-Profi	1			s:\A	ustausch\A
-		_					J	Ergebnis	gedreh	t			Durc	hmesser ei
							h	lane	Take	1	onind Value	Toleran	ie Neg	Talerance Pos
			1					DateOfficecution	30.15.201					
-			1					ContourDeniation.						
1			1					ContourDeriation. ContourDeriation.						
			\leq					ContourDeniation.						
		10 mm :)						Contourbillance?						
		(_					ContourDeviation	-0,003		,000	1,050		1,050
1			_					ContourCeniation.	. 0,128			1,050		1,050
1		(_								,000	1,050		1,050
-			_					ContourCeriationS			,000	1,050		1,050
			<u> </u>					Contourth Range?			,000	19765	11340423.	. 179769313406232
-		_						ContourDeriation.				1.09		1.050
+++++++											,000 .000			
\$ cn	d on	Son	20 cm		5 01	25								
Print	t Label	Star	t Simula	tion			top		Ad	knowle	dae			iscard

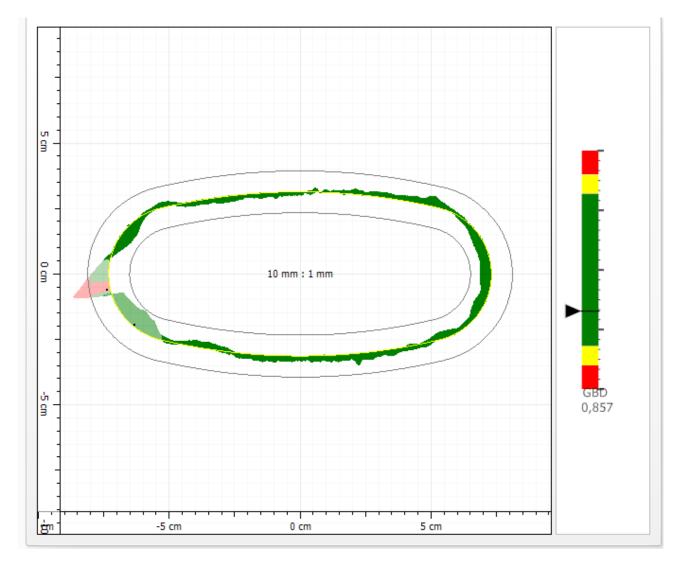
Measures:

- Dimensions & Geometries
- Leg Angles
- Reognition of Edges
- Comparison Real & Nominal Contour
- Violation of Tolerance Values
- Approach towards Critical Values
- Statistical Process Capability
- Machine Suitability
- Process Suitability
- Reporting

Capabilites:


- Offline sample Inspection
- Inline Production Controlling
- Embedding in Production Process
- Complete Automatic Operation
- Robotic Loading and Deloading

Automotive Catalytic Converter


Transmission Exposure of an Automotive Catalytic Converter employing Telecentric Lenses

- Circumference
- Shape Contour
- Edge Geometry
- End Faces
- Cylindrical Tolerance
- Parallelism
- Perpendicularity
- Recognition of Dents
- Pattern Recognition
- Welding Seams
- Comparison Real & Nominal Contour
- Violation of Tolerance Limits
- Approach towards Critical Values
- Statistical Process Capabilities
- Machine Suitability
- Process Suitability
- Reporting

InnoMeas Results

Contour Evaluation of an Oval Automotive Catalytic Converter

InnoMeas RMS Systems

The InnoMeas RMS systems are designed as stand alone comprehensive inspection systems. All processes like feeding the devices under investigation, coarse pre-inspection, inspection of particular details etc. are controlled internally by the InnoMeas RMS station itself. Part loading and deloading can be acchieved by robots or manually. However, InnoMeas RMS systems can be embedded in an automated production line.

- 1: Measuring chamber
- 2: Feeding station
- 3: Device under test (DUT): i.e. car alloy wheel
- 4: Monitor for DUT position & centering

- 5: Safety light curtain
- 6: Operator's push button assembly
- 7: Handheld scanner for DUT identification
- 8: Monitor for displaying results

InnoMeas CMS Systems

The InnoMeas CMS systems are designed with special respect to the inspection of automotive catalytic converters. Size and shape are measured before and after the canning process. Employing laser point triangulation preset sectional planes of the monolith and the canned converter can be measured. Additonally, with proper accesseries installed, the mat weight and bar or DMC codes can be read. The gap bulk density (GBD) is evaluated as an important measure for quality control. With optional software reporting tools a surveillance of process parameters is possible. Not only round samples can be measured. Elliptic, sectional and even potatoe shaped are possible to be inspected

Basic Setup

The monolith or converter is put on a rotary table (no centering required). The triangualtion laser sensor is mounted on a vertical positioning stage (z-axis), which allows automatic approach to the preset sectional planes for the particular measurement.

Z-axis including the sensor as well as all controllers and supplies for the entire measurement system is implemented in a dust proof shielded housing. The rotary table is accessible for loading the parts of investigation by robots or manually. The housed z-axis assembly and the rotary table are bolted on a bottom rail. Aligning the z-axis with respect to the rotary table, the measuring range of the laser sensor is adjusted.

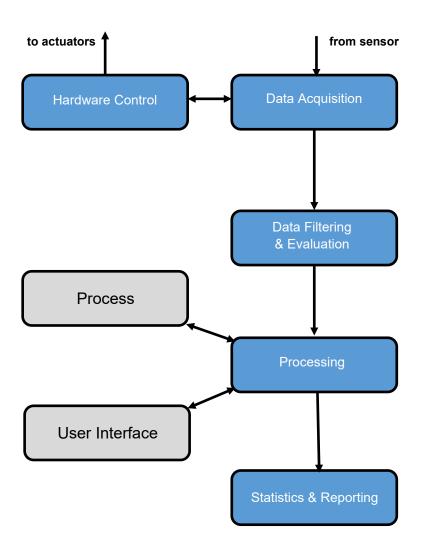
All measuring features are software controlled and via communication ports prepared for automated operation.

Functions

» precise detection of the shape in defined sectional planes

- » diameter (local, averaged), shape contour deviation,
- » circumference, maximum inscribed circle, form tolerance
- » continuous scanning of the complete shape with error detection: straightness of the shape and edge chipping *)
- » height, chunking, parallelism or imbalance of the end face, rectangularity of the shape and end faces *)
- » weight of the support mat, sheet thickness *)
- » clearance between substrate and sheet (gap), local and global gap bulk density (GBD) *)
- » contour target value, diameter target value, closing stroke of the canning process *)

*) optional and/or accessories



InnoMeas Software

The brain of Qsigma's inspection systems is the *InnoMeas* software. Its modularity warrants keeping pace with changing requirements. Based on Windows operating systems the programming architecture is compatible to newly launched Windows operating systems using Microsoft Dot Net Framework.

Flexible window structures provide adaptions to the particular user requirements, different operational levels can be set and stored. Measurement templates can be created by the user himself or, alternatively, Qsigma offers it as a part of the comprehesive after sales support. The creation of templates as well as entire measurement and evaluation sequences is supported by dedicated wizards.

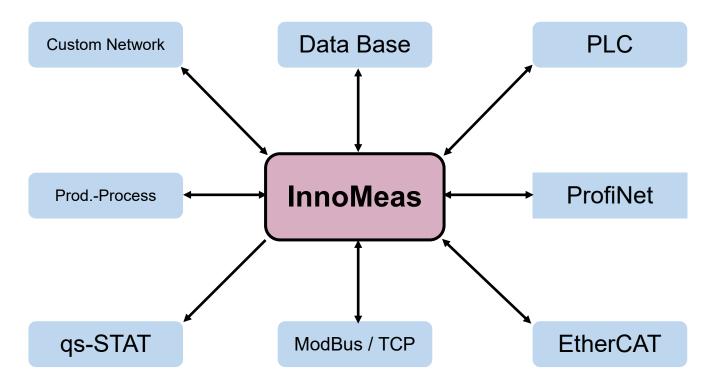
Updating the evaluation and its algorithms is self evident to improve the effectivity of computing. Even the evaluation process can be adapted to particular requirements.

sigma

Neccessary requests of user interactions can be programmed. Alert values for quality control can be set.

Communication with the plant control system is important and of central value within the *InnoMeas* software. Interfacing with designated production line manufacturers already exists. The *InnoMeas* software supports an interface to fieldbus systems (Modbus, EtherCAT, ProfiNet, etc.). A comprehensive data export structure (.csv, .pdf, .dfq, flexible data base input and output, export to Excel spread sheets etc.) rounds off the package.

Optionally a package for statistic evaluation (e.g. process capability) and reporting can be added.


InnoMeas Software

Qsigma

InnoMeas communication capabilities

The InnoMeas software is not an isolated device. Communication is one of the key features of InnoMeas.

InnoMeas controls the measurement itself and cares for computing reults with respect to customer's requirements. And, moreover, it implements the communication for the exchange of production parameters, process line status messages, process control commands, data filing, data reporting etc..

Excamples of data exchange capabilities supported by InnoMeas software

Next to controlling the internal processes in the measurement system itself the *InnoMeas* software is the gateway of command and data interchange with external devices. *InnoMeas* supports a variety of interfaces and protocols as well as data exports using definite formats like e.g. .dfq for qs-STAT reporting and process statistics or simple Excel spread sheets.

Thus *InnoMeas* systems can be easily implemented in existing data and command structures of superordinated processes. Moreover, *InnoMeas* can keep pace with future innovation steps.

